If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+X=74
We move all terms to the left:
X^2+X-(74)=0
a = 1; b = 1; c = -74;
Δ = b2-4ac
Δ = 12-4·1·(-74)
Δ = 297
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{297}=\sqrt{9*33}=\sqrt{9}*\sqrt{33}=3\sqrt{33}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-3\sqrt{33}}{2*1}=\frac{-1-3\sqrt{33}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+3\sqrt{33}}{2*1}=\frac{-1+3\sqrt{33}}{2} $
| 18u-9u+4u-11u=12 | | |4x-13|=2x+13 | | 8d+3d+12d+6d-2d=7 | | 4s=403 | | 4(2x+9)=4(2x+6) | | x2=16/3 | | 2z-65=z+12 | | 0.1×y=0.05 | | 2R=36n | | 4x+8=2(x+) | | 15a-4=14a | | 1v+33343v=1 | | -68=n+-41 | | 4x-29=2x | | (5)-x+7/8=x/3 | | (3x+4)=(6x+5) | | 16x+17=4x+41 | | 14d+3d-9d-2d=12 | | p-497=919 | | x/11+8=6 | | 8a-8a+a=8 | | 130-x=50x | | 5u-2u+2u-3u=18 | | 3/5h+24=60 | | 1.2m+4.7-0.9m=2.3+0.3m+7.1 | | 14x+4+15x-5=90 | | 7u-4u+u=16 | | 3z-3z+2z-2z+4z=12 | | 3w-94=2w | | -14=14y+5 | | 7z+5z-12z+2z=10 | | 925=y+142 |